
CMPT 110-D100 Spring 2012

Assignment #5

In this assignment your employer is tasking you with the design of a simple interface to their

Megacities Population database. The goal is to create a GUI to edit the contents of the database,

both the Countries and Cities tables.

The interface should start with the following screen:

Clicking on ‘Edit Countries’ should bring up another form to allow for the editing Countries:

Clicking on ‘Edit Cities’ should bring up another form to allow for the editing Cities:

CMPT 110-D100 Spring 2012

Requirements for ‘Main’ form:

1) It should display the number of countries and cities, calculated from the database and

not hard-coded.

2) Clicking on either button should bring up a new form for either the country or cities,

depending on which button was clicked.

Requirements for ‘Countries Editor’ form:

1) When the form is loaded, all country information should be loaded into a

DataGridView.

2) The user should be able to edit and delete countries, but not add countries to the list.

3) Any changes which are made to the data are saved when the user clicks on the ‘Save

Countries’ button.

Requirements for ‘Cities Editor’ form:

1) When the form is loaded, all countries should be loaded into a drop-down-list, as

below. A single country should show up in the list only once.

2) When the user selects a country from the drop-down list, the corresponding cities

should be loaded into a DataGridView for editing.

3) The user should be able to edit and delete cities, but not add new cities to the list.

4) Any changes which are made to the data are saved when the user clicks on the ‘Save

Cities’ button.

Marking Criteria:

 Use of the top-down design and structured programming: 10%

 Correct functionality: 50 %

 In-code documentation: 20%

 Pseudo-code: 20%

